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Turbulent premixed flame propagation in the vicinity of a wall is studied using a
three-dimensional constant-density simulation of flames propagating in a channel. The
influence of the walls is investigated in terms of the flamelet approach, where flamelet
speed and flame surface density transport are used to describe the flame. The walls
have constant temperature and lead to flamelet quenching for sufficiently small wall–
flame distances. Starting from the exact evolution equation for the surface density of
propagating interfaces (Trouvé & Poinsot 1994; Candel & Poinsot 1990; Pope 1988), a
budget for the flame surface density equation is presented before, during, and after the
interaction with the wall. Before the flame interacts with the wall, flame propagation
is controlled by a balance between surface production and annihilation. During the
interaction, high flame surface density gradients near the wall are responsible for
the predominance of the transport terms. Closures of all terms of the flame surface
density equation are proposed. These models are based on flamelet ideas and take into
account wall effects. Enthalpy loss through the wall affects flamelet speed, flamelet
annihilation and flame propagation. Decrease of turbulent scales near the wall affects
turbulent diffusion and flame strain. This model is compared to DNS results using
two types of tests: (i) a priori tests, where individual terms of the modelled flame
surface density equation are compared to the terms of the exact interface density
propagation equation, calculated with the DNS; (ii) a posteriori tests, where the final
model is used to obtain total reaction rate, mean fuel mass fraction, heat flux at the
wall and fuel mass fraction at the wall in the configuration used in the DNS. For
both types of tests the model compares well with the DNS results.

1. Introduction
Understanding and modelling of near-wall turbulence have been key issues in engi-

neering problems and the source of an extremely abundant literature. The treatment
of near-wall turbulence for non-reacting flows is still a difficult problem and quite
often the limiting factor in practical predictions.

† Author to whom correspondence should be addressed.
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Wall problems become more critical in chemically reacting flows. Combustion is
strongly influenced by the presence of walls which may cause, for example, flame
quenching. The flame also has a significant effect on the flow near the wall as well as
on the heat flux to the wall (Clendening, Shackleford & Hilyard 1981; Lu et al. 1990;
Ezekoye & Greif 1993; Ezekoye, Greif & Lee 1992; Popp & Baum 1997). Heat fluxes
of the order of 1 MW m−2 may be reached in practical situations and prediction of
wall temperatures required for structure design may become hazardous.

Flame–wall interaction in laminar flows has been extensively studied both exper-
imentally and numerically (Jarosinski 1986; Clendening et al. 1981; Huang, Vosen
& Grief 1986; Vosen, Greif & Westbrook 1984; Ezekoye & Greif 1993; Ezekoye et
al. 1992; Vlachos 1995, 1996). However, except for the pioneering numerical work
of Westbrook et al. 1981 and the more recent work of Popp & Baum (1997) who
used complex chemistry schemes, most modelling has been based on simple one-step
chemical reactions. At the moment, the effects of surface chemistry or adsorption
are not completely understood (Popp & Baum 1997). More importantly, there are
important variations in experimental results which lead to difficulties in interpreting
the quality of models (Ezekoye & Greif 1993; Ezekoye et al. 1992; Popp & Baum
1997). This is due to the difficulty of performing measurements close to walls. In
practice, only heat fluxes to the wall have been measured and even they exhibit large
uncertainty margins.

In turbulent flows, modelling of flame–wall interactions has not yet been recognized
as an important issue. Except for some simple attempts (Jennings & Morel 1990;
Poinsot, Haworth & Bruneaux 1993), most models for turbulent premixed combustion
did not use specific corrections for near-wall effects. In practice, very little is known
about the effects of turbulence during flame–wall interaction.

The interaction between flame, wall, and turbulence is quite complex and involves
multiple paths. The wall quenches flame elements close to it via heat losses and fuel
depletion (walls are generally much colder than the flame). The wall also limits the
flame wrinkling. Indirectly, it affects the turbulent flame because it strongly modifies
the turbulence acting on the flame when the flame enters the near-wall region. The
flame affects the turbulence due to the dilatation generated at the flame front and the
increase of viscosity in the burnt gases. Obviously these coupled interactions lead to
phenomena which are difficult to model.

One possible way to formulate the problem in the context of modelling is to use
the classical flamelet approach (Cant, Pope & Bray 1990; Candel et al. 1990). In
this approach, the flame–flow interaction is described in terms of the product of two
quantities: a local consumption speed that characterizes the inner flame structure,
and a surface density that characterizes flame wrinkling.

The mean reaction rate, which is the central quantity in most turbulent combustion
models, can then be written as proposed by Trouvé & Poinsot (1994):

ω̇R = ρ0
1Y

0
1 〈sl〉S Σ, (1)

where Σ = 〈Σ ′〉 is the interface surface density between fresh and burnt gases (Σ ′ is
the local surface to volume ratio). The 〈 〉S operator designates a surface mean defined
(Pope 1988) for any function Q by 〈Q〉 = 〈QΣ ′〉 /Σ so that 〈sl〉S = 〈slΣ ′〉 /Σ is the
surface-averaged consumption speed; sl = 1/(ρ0

1Y
0

1 )
∫
ω̇R dn is the local consumption

speed (reaction rate integrated along the local normal to the flame); 〈 〉 denotes a
standard ensemble averaging; ρ0

1 is the initial density in the fresh gases and Y 0
1 is the

initial fuel mass fraction in the fresh gases.
Two quantities must be determined to make equation (1) useful: (i) the mean
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consumption speed of flamelets 〈sl〉S and (ii) the flame surface density Σ. We expect
both quantities to be affected by the presence of the wall because of the multiple
interactions described above.

(i) In general, sl and the local flame structure are modified by the turbulent flow
(owing to flame stretch) and by heat losses (owing either to the presence of walls
or to radiative losses). Many recent DNS results (Trouvé & Poinsot 1994; Haworth
& Poinsot 1992; Baum et al. 1994) have shown that, far from walls, sl remains
approximately constant over a wide range of turbulence conditions. However, in the
presence of enthalpy losses through wall heat losses and fuel depletion, the local
flame speed is affected and decreases (Williams 1985; Wichman & Bruneaux 1995).
Finally, close enough to the wall, flame elements are quenched. This occurs when the
distance between wall and flame is of the same order as the quenching distance δQ.
This distance is usually expressed in terms of a Péclet number defined by PeQ = δQ/d,
where d is a flame reference length defined by d = λ1/(ρ1cps

0
l ) and subscript 1 refers to

fresh gas and s0l is the unstrained planar flame speed. The Péclet number may depend
on configuration and varies between 3 and 7. We will focus on this effect throughout
this paper and neglect the effects of stretch on sl .

(ii) An exact transport equation can be derived to obtain the interface surface
density Σ. It is derived from the equation for the tranport of a self-propagating
surface (Trouvé & Poinsot 1994; Candel & Poinsot 1990; Pope 1988):

∂Σ

∂t
+

∂

∂xi
〈v〉S Σ +

∂

∂xi
〈ωn〉S Σ = 〈aT 〉S Σ + 2 〈ωkm〉S Σ, (2)

where v is the fluid velocity vector, n is the flame normal, ω is the propagation speed
of the surface relative to the flow, 〈aT 〉S = 〈∇ · v − nn : ∇v〉S is the strain acting on
the interface, and km = 1

2
∇ · n is the surface curvature. The two convective terms on

the left-hand side of (2) are the transport terms due to convection by the flow and
flame propagation respectively. The terms on the right-hand side are the stretch terms
relative to flame straining by turbulence, and the combined effect of flame curvature
and propagation. Most of the effects mentioned above (the decrease of turbulent scales
near the wall and the effect on flame wrinkling and turbulent transport, the decrease
of local flame propagation speed due to quenching, the geometrical limitation induced
by the wall on flame curvature, etc.) can be described in terms of their influence on
the various terms of the interface surface density equation (2).

The objectives of this research are to study those phenomena qualitatively and
quantitatively using three-dimensional constant-density direct numerical simulations
(DNS). We will perform a DNS of flames interacting with walls in controlled turbu-
lence and exploit this data using (2) to understand the interaction and to model it.
A budget of all terms of (2) will be constructed to illustrate the importance of the
various mechanisms.

Two-dimensional variable-density DNS of flames interacting with walls in decaying
turbulence (Poinsot et al. 1993) have already led to a basic understanding and to
a first flame–wall interaction model (FIST). However, limitations due to decaying
two-dimensional turbulence revealed a need for a better resolved wall–turbulence–
flame interaction. The three-dimensional DNS code used here was initially developed
by Bruneaux et al. (1996). In the initial paper, both variable- and constant-viscosity
calculations were performed and compared. Here we will limit ourselves to constant-
viscosity cases. Under this assumption (and the assumption of constant density) the
flame does not affect the flow through viscosity changes or flow acceleration. This
simplified configuration is more suitable to a study of the wall effects on the flame
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Figure 1. Configuration for direct numerical simulation of flame–wall interaction.

since the turbulence is stationary and well-known. We believe that these assumptions
are not too limiting since previous results (three-dimensional variable viscosity and
constant density (Bruneaux et al. 1996) and two-dimensional variable viscosity and
density simulation (Poinsot et al. 1993) showed the preponderance of turbulence in the
fresh gases. Differences between two- and three-dimensional DNS were also described
by Bruneaux et al. (1996).

All DNS presented here use a simple chemistry assumption where chemical reaction
is controlled by one irreversible reaction Fuel → Products. Computations including
detailed chemistry (but only in one dimension) may be found in the work of Popp &
Baum (1995) and Westbrook, Adamczyk & Lavoie (1981).

We will first recall the characteristics of the database used for this work in §2.1.
A detailed study of the Σ-equation terms will then be presented in §3 where the
budget of the equation is presented. Finally models for all terms of the Σ-equations
(including wall effects) are presented.

2. Direct numerical simulation of flame–wall interaction
2.1. Configuration

The simulation used in this work has been presented by Bruneaux et al. (1996). A
three-dimensional direct numerical simulation of the turbulent flow in a channel is
used to generate the baseline flow. A slab of burnt gases is introduced at the initial time
near the centreplane of the channel. This slab generates two flames which propagate
towards the walls (see figure 1). Constant density and viscosity assumptions are used.
Variable-viscosity calculations were also performed by Bruneaux et al. (1996) but a
constant-viscosity assumption allows a stationary flow field which is more useful for
modelling purposes.

The reaction is represented by a simple one-step mechanism, corresponding, for
example, to lean combustion in which fuel is the limiting factor in determining the
reaction rate (Williams 1985). The reaction rate ω̇R is expressed as

ω̇R = ρ YFB exp

(
−Ta
T

)
, (3)

where YF is the mass fraction of the deficient reactant (fuel), B is the pre-exponential
factor and Ta is the activation temperature.

The work of Bruneaux et al. (1996) was focused on individual realizations of
premixed flame–wall interaction phenomena. A typical result of their DNS is given
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Figure 2. Example of DNS of flame–wall interaction result. Two flames (visualized by isosurfaces
of temperature) are initiated in the centre of the channel and propagate towards the walls.

in figure 2. This picture shows how the two flame sheets are convoluted by the
turbulence and finally interact with the walls, leading to localized quenching and
large heat fluxes to the walls. Our objective here is to understand the phenomena for
modelling purposes; this requires access to average quantities. To obtain sufficient
sampling we performed averages in planes parallel to the walls but also phase averages
on different realizations of the flow. This was done by extending the database for
turbulent premixed flame–wall interaction (Bruneaux et al. 1996): case 1 was repeated
30 times with different initial flow fields obtained by running the channel flow
code without combustion; they are separated by ten eddy turn-over times and are
statistically independent. The y-direction is normal to the wall and the walls are
located at y = 0 and y = 2h. The periodicity in the x- and z-directions makes the
configuration one-dimensional in the mean (but still time dependent). At each instant,
averages for all quantitites are performed over the 30 different realizations and in
planes parallel to the wall, since the directions x and z parallel to the wall are periodic.

In the DNS, the dynamic viscosity is constant µ = µ1; the Reynolds number based
on friction velocity u0

τ and half-channel width h, Reτ = ρ0
1u

0
τh/µ1, is 180; the thermal

diffusivity λ varies linearly with temperature: λ = λ1

(
T/T1

)
; the molecular diffusivity
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D is related to λ by D = λ/(ρ0
1cpLe) where the Lewis number Le is unity. The fresh

gas temperature is T1 and the adiabatic flame temperature is T2. Thermochemical
parameters are such that the temperature factor α = (T2 − T1)/T2 is 0.75 and the
reduced activation energy β = αTa/T2 is 6. The pre-exponential constant B is chosen
so that the unstrained laminar flame speed s0l is given by s0l /uτ = 0.363. The flame
thickness δ0

l (defined by δ0
l = (T2 − T1)/(∂T/∂n)max) is such that δ0

l /h = 0.15. More
details may be found in Bruneaux et al. (1995).

In general, there is no clear scale separation between the quenching zone and viscous
zone (the quenching zone is the zone between the wall and the nearest position of
the flame during the interaction, and the viscous zone is the near-wall zone where
the flow can be considered as purely laminar (Kim, Moin & Moser 1987). Expressed
in wall units, the quenching distance is d+ = duτ/ν = (1/Pr)(uτ/s

0
l ) after using the

definition of the flame reference length d. For most practical hydrocarbon turbulent
flames, uτ will range from 0.1 to 2 m s−1 while s0l varies between 0.1 to 1 m s−1 so
that we do not expect d+ to be smaller than 0.1 or larger than 2. This means that
the quenching zone thickness will be of the order of the viscous sublayer thickness:
typically quenching will not happen in the fully turbulent zone (far from the walls) or
in the nearly laminar zone (close to the wall). In this particular DNS, the quenching
distance is δ+

Q ' 10, so that the quenching zone thickness is of the order of the viscous
sublayer thickness.

2.2. Exploitation

All terms of the interface surface density equation (2) can be obtained from the DNS
database. The interface between fresh and burnt gases is defined as the isosurface
of reduced temperature θ = (T − T1)/(T2 − T1) = cp (T − T1)/(Y

0
1 ∆H) = 0.85 (∆H

is the heat of reaction per unit mass of fuel). This temperature is chosen to match
the location of the maximum of the reaction rate ω̇R during a laminar flame–wall
interaction. The normal to the interface is then calculated as n = −∇θ/ | ∇θ |. n
points towards the fresh gases.

The propagation speed of that surface is obtained using (Trouvé & Poinsot 1994)

ω =
1

∇θ
Dθ

Dt
=

1

ρ | ∇θ |

(
∂

∂xi

(
λ

cp

∂θ

∂xi

)
− ω̇R

)
. (4)

Without heat losses and in the absence of strain or curvature effects, this displace-
ment (or propagation) speed ω is equal to the consumption speed sl (defined by
sl = 1/(ρ0

1Y
0

1 )
∫
ω̇R dn). However, for turbulent flames, sl and ω may differ by a large

amount. Positive curvature will decrease ω relative to sl , while negative curvature
increases it. If the curvature is large enough, ω may even become negative. Moreover,
in the vicinity of the wall, both ω and sl decrease but ω decreases more rapidly and
may become negative when the flame retreats from the wall, seeking a region of lower
enthalpy loss, while sl always stays positive (Wichman & Bruneaux 1995).

To obtain the local surface to volume ratio Σ ′, the flame area is approximated
using the angle between the local temperature gradient and a coordinate direction
(Rutland 1989). Since periodic boundary conditions are used, averaging may be
performed in the two directions parallel to the walls (x and z) at each instant
and over the 30 realizations at the same instant. This averaging is denoted by an
overline or brackets 〈 〉. The derivation of the following terms is then straightforward:
Σ = 〈Σ ′〉, 〈aT 〉S = 〈aTΣ ′〉 /Σ denotes the surface mean, 〈ωkm〉S = 〈ωkmΣ ′〉 /Σ. The
mean reaction rate ω̇R is obtained by averaging ω̇R in planes parallel to the walls and
throughout the 30 realizations, and is a function of the y-coordinate (and time).
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Figure 3. Profiles of interface surface density, reactive interface density, mean temperature and
mean mass fraction at various times of flame-wall interaction. In (a), a thin line corresponds to
the interface surface density Σ, and a thick line corresponds to the reactive interface density ΣR ,
while in (b), a thin line corresponds to the mean temperature 〈θ〉, and a thick line corresponds to
the mean mass fraction 〈Y 〉: , t/tf = 3.6; , t/tf = 7.3; , t/tf = 10.8; ,
t/tf = 14.6.

3. Budget of the interface surface density equation
3.1. Evolution of the flame surface density fields

It is convenient to replace the mean reaction rate ω̇R by an equivalent reactive flame
surface density ΣR defined by ΣR = ω̇R/(ρ

0
1Y

0
1 s

0
l ). In the absence of quenching or

strain, Σ is related to ω̇R by ω̇R = ρ0
1Y

0
1 s

0
l Σ or ΣR = Σ since we used Lewis number

unity. During the interaction, near the wall, part of this interface is quenched so that
ω̇R < ρ0

1Y
0

1 s
0
l Σ and ΣR < Σ.

Profiles of Σ, ΣR , 〈θ〉, and 〈Y 〉 are presented in figure 3 for various times t
normalized by the flame time tf = d/s0l . Y is the reduced fuel mass fraction defined
by Y = YF/Y

0
1 . Early in the simulation (t/tf = 3.6), the flame is far from the wall, no

quenching takes place, and the profile of the interface density Σ matches the profile
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Figure 4. Profiles of the terms of the flame surface density equation at time t/tf = 3.6. (a) ,
−(∂/∂y) 〈v′〉S Σ (turbulent diffusion); , −(∂/∂y) 〈ωny〉S Σ (propagation); , 〈aT 〉S Σ
(strain); , 2 〈ωkm〉S Σ (destruction). (b) , ∂Σ/∂t (time variation (left-hand-side term));

, −(∂/∂y) 〈v′〉S Σ − (∂/∂y) 〈ωny〉S Σ + 〈aT 〉S Σ + 2 〈ωkm〉S Σ (right-hand-side term)

of the normalized reaction rate ΣR . The mean fuel mass fraction at the wall is still the
initial value and the burnt gases occupy only a small fraction of the channel. Then,
at t/tf = 7.3, the flame brush approaches the wall, the temperature gradient near
the wall increases while the fuel mass fraction near the wall decreases. No quenching
occurs yet and ΣR still matches Σ.

Later, at t/tf = 10.8, the flame brush starts to interact with the wall and quenching
takes place. This decreases the reactive interface density ΣR relative to the total
interface density Σ. The mean temperature gradient is non-zero at the wall, indicating
that the mean wall heat flux is no longer zero. Finally at t/tf = 14.7, most of the fresh
gases in the channel have been consumed and the interface density is much larger
than the reactive surface density. Most of the interface is quenched. Very little fuel is
available and the mean wall heat flux is large.
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Figure 5. As figure 4 but at time t/tf = 5.5.

3.2. Terms of the Σ-equation

Using the channel flow simplification (dependence only on y, v = w = 0), the exact
interface density equation (2) reduces to

∂Σ

∂t
= − ∂

∂y
〈v′〉S Σ −

∂

∂y
〈ωny〉S Σ + 〈aT 〉S Σ + 2 〈ωkm〉S Σ, (5)

where ny is the y-component of the flame normal, v′ is the y-component of the
fluctuating velocity (also equal to v since the mean velocity in the y-direction, v, is
zero); 〈aT 〉S is the flame strain defined by aT = ∇ · v− nn : ∇v and km is the curvature
of the front defined by km = 1

2
∇ · n.

All the terms on the right-hand side of this equation may be computed in the
DNS database and their profiles (averaged over 30 realizations) at various times are
presented in figures 4–10, parts (a). Parts (b) of those figures compare the transient
term ∂Σ/∂t to the sum of the terms on the right-hand side and show that the budget
of (5) closes quite well.

The first term on the right-hand side of (5) (−(∂/∂y) 〈v′〉S Σ) is the turbulent
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Figure 6. As figure 4 but at time t/tf = 7.3.

diffusion of the interface. Its function is to spread the flame since it is negative at the
centre of the flame brush, and positive at the edges (gradient diffusion). During the
peak of flame–wall interaction (t/tf = 9.1, 10.8, 12.8 and 14.6) it reaches high values
due to the large gradients of Σ near the wall. This is a consequence of the flame brush
narrowing and flattening due to the geometrical constraints imposed by the wall.

The second right-hand-side term (−(∂/∂y) 〈ωny〉S Σ) accounts for the propagation
of the interface due to its own speed relative to the flow. It contributes to the
propagation of the flame towards the wall, since it is positive near the wall and
negative far from the wall. This is true except for the very near-wall flame elements
where this term is negative, as a result of the negative sign of the propagation speed.
Before flame–wall interaction (t/tf < 9), the negative sign of this term is due to
the strong curvature at the front of the flame brush. During flame–wall interaction
(t/tf > 9) it is due to quenching; the curvature is no longer large, because of the
flattening effect of the wall. But flamelet elements that are quenched through enthalpy
losses retreat from the wall towards a lower enthalpy loss region (as explained by
(Wichman & Bruneaux 1995).
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Figure 7. As figure 4 but at time t/tf = 9.1.

The third term on the right-hand-side of (5) (〈aT 〉S Σ) is the strain of flame elements
due to flow divergence. Usually the mean flow and turbulent flow contributions are
separated, but here the mean flow contribution is negligible and not shown. The strain
term is positive everywhere in the flame brush and at all instants. Therefore it is a
production term in the Σ-equation. This result was obtained in previous simulations
(Trouvé & Poinsot 1994). It increases during the interaction especially when the flame
brush approaches the near-wall region of high turbulence. Late in the interaction
(t/tf > 10), highly strained flames are observed in the vicinity of the wall (y+ ' 20).
Bruneaux et al. (1996) showed that horseshoe vortices are responsible for the rapid
convection of these strained flame elements towards the wall. Those flamelets come
closer to the wall than laminar unstrained flames. There is a near-wall region into
which only those highly strained elements penetrate. This mechanism is the source of
the existence of peaks of strain rate near the walls as shown in figure 8 or 9.

The fourth right-hand-side term of (5) (2 〈ωkm〉S Σ) accounts for the combined effect
of flame propagation and curvature. It is always negative and acts as a destruction
term in the Σ-equation. It remains negative in regions of positive curvature, owing
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Figure 8. As figure 4 but at time t/tf = 10.8.

to the negative displacement speed ω. The negative ω is first due to large positive
curvature, and later, it is due to quenching which induces the flame to retreat from
the wall. It increases during the interaction.

The order of magnitude of the terms in the Σ-equation changes as the interaction
with the wall takes place. First (at t/tf = 3.6) the dominant term is the turbulent
diffusion. The strain, curvature and propagation terms are smaller. This is due to
the initial condition which corresponds to a planar laminar flame which is strongly
diffused by the flow until its wrinkling is compatible with the turbulence. When the
flame wrinkling has adapted to the turbulent flow field, but before the interaction
with the wall begins (for 4 < t/tf < 9), the dominant terms are the turbulent strain
and the curvature terms. The propagation term is one quarter of the strain term. (In
general, the ratio of the turbulent strain to the propagation term is related to the
turbulent–flame speed ratio.) When flame–wall interaction begins, high Σ gradients
near the wall appear and induce large values of the propagation and diffusion
terms. They dominate until the end of the simulation. In summary, far from the
wall, the production (strain) and destruction (curvature) terms are predominant and
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Figure 9. As figure 4 but at time t/tf = 12.8.

balanced, the transport (turbulent diffusion and flame propagation) terms are smaller.
This balance is reversed during flame–wall interaction due to the large gradients of
interface density Σ near the wall.

Figures 4–10 parts (b) show that the transient term ∂Σ/∂t balances the sum of
the four right-hand-side terms. The budget for the Σ-equation (5) is closed at all
times showing that the resolution and sampling used to post-process the database are
sufficient. The transient term is obtained using a centred difference with ∆t = 1.8tf .
It shows the initial propagation of the flame towards the wall, and at the end of the
interaction, the movement of the flame away from the wall because of quenching and
turbulent diffusion (t/tf = 12.8 and 14.6).

4. Modelling flame–wall interaction
We will now study the consequences of wall effects on the modelling of the mean

reaction rate in flamelet models. First, we will examine the effect of the wall on
flamelet consumption speed 〈sl〉S , which is affected by enthalpy losses to the wall.
Then we will study the effect of the wall on flame wrinkling by examining the variation
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Figure 10. As figure 4 but at time t/tf = 14.6.

of Σ through the various terms of the modelled Σ-equation, given by the coherent
flame model (CFM).

4.1. A model for the consumption speed

It is well-known that interaction between laminar flames and walls or, more generally,
the behaviour of non-adiabatic flames may be characterized in terms of the enthalpy
loss parameter LH (Williams 1985; Wichman & Bruneaux 1995), defined by

LH =
H0
F −H

H0
F −H0

P

, (6)

where H is the gas enthalpy H =
∑
HiYi, Hi is the enthalpy of species i, Yi is the mass

fraction of species i, H0
F is the fuel enthalpy at the temperature of the fresh gases,

and H0
P is the enthalpy of the product in the same state. For simple chemistry with

fuel the limiting factor (Williams 1985; Wichman & Bruneaux 1995), this reduces to

LH = 1− (Y + θ). (7)
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In an adiabatic premixed flame with unity Lewis number, LH is zero everywhere. When
the flame is non-adiabatic (as near walls), LH increases, indicating that quenching is
possible. This is also true for turbulent flames.

Analytical calculations of Wichman & Bruneaux (1995) show that for a laminar
head-on quenching flame–wall interaction, the flame consumption speed is approxi-
mately

sl/s
0
l = e−βLHf/2, (8)

where sl = 1/(ρ0
1Y

0
1 )
∫
ω̇R dn, LHf is the enthalpy loss at the flame location, and β the

reduced activation energy.
This result may be extended to predict the behaviour of individual flamelets in a

turbulent flame brush as follows. Combining the definition of ΣR , ω̇R = ρ0
1Y

0
1 s

0
l ΣR

with (1), we obtain 〈sl〉S /s0l = ΣR/Σ. This ratio will be called the unquenched factor
Q = 〈sl〉S /s0l = ΣR/Σ. It accounts for the quenching of a turbulent flame. It is 1
if all flamelets elements are burning at speed s0l , and decreases when flamelets are
quenched. Assuming that the local behaviour of each turbulent flamelet is similar to
a laminar interaction:

Q =

〈
sl

s0l

〉
S

(9)

so that (8) leads to a simple model for Q:

Qmodel = e−γQβLH , (10)

where γQ is a model constant. The best fit with DNS results was obtained for γQ = 2.

We recall here that LH is the ensemble-averaged enthalpy loss with a dependence
only on y.

Consequently, (1) is modelled as

ω̇R = ρ0
1Y

0
1 Qmodels

0
l Σ = ρ0

1Y
0

1 e−γQβLH s0l Σ. (11)

Figure 11 shows the time evolution of global quantities related to the reaction
rate. They are obtained through integration over the whole simulation domain. The
normalized total reaction rate is displayed along with the total fresh–burnt gas
interface. At the beginning, those quantities are almost equal, the interface is burning
everywhere (no quenching) and its area increases with flame wrinkling. Then for
t/tf > 9 the total reaction rate decreases while the total interface decreases but
remains larger than its initial value. The decrease is due to a reduction in flame
wrinkling induced by the wall and because more of the interface is quenched. The
model for the normalized reaction rate (11) is also displayed and compares well with
the DNS value. The decrease relative to the total interface is well predicted. Figure 12
displays profiles that show that the mean reaction rate compares well with the model
at all times.

4.2. Terms of the interface surface density equation

The model given above provides a good estimate of the mean reaction rate if the
interface surface density Σ is known. We now focus our work on the determination
of Σ. One method is to construct a conservation equation for this quantity based on
heuristic considerations as done by many authors (Cant et al. 1990; Candel et al.
1990; Boudier et al. 1992). Another is to model each individual term of the exact
Σ-equation (2) or a related equation (Mantel & Borghi 1994; Trouvé & Poinsot 1994).
We choose to start from heuristic equations but to validate each term in these model
equations by comparison with the exact terms in (2).
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Figure 12. Profiles of reactive surface density, and test of the model for quenched ratio, at four
different times: , t/tf = 3.6; , t/tf = 7.3; , t/tf = 10.8; , t/tf = 14.6;

, reactive flame surface density ΣR (measured in DNS); , QmodelΣ where Σ is measured
in DNS and Qmodel is given by the model.

All modelling methods lead to the same form for the conservation equation of Σ.
As an example, the CFM (Candel et al. 1990; Boudier et al. 1992) can be written (for
a one-dimensional turbulent flame propagating in the y-direction)

∂Σ

∂t
=

∂

∂y

(
νt

σΣ

∂Σ

∂y

)
+ αmKtΣ − βmDΣΣ, (12)
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Figure 13. Profiles of turbulent viscosity νt: , calculated with the DNS code
νt = −〈u′v′〉 /(du/dy); , ν∞t = cµk

2/ε; , using a Van Driest mixing length,

ν0
t = c1

µ

(
κy
(
1− e−y

+/A+))
k1/2; ×, modelled turbulent viscosity corrected in the log zone,

min
(
ν∞t , ν

0
t

)
.

where (∂/∂y)(νt/σΣ)(∂Σ/∂y) is the modelled turbulent diffusion term; νt is the turbu-
lent viscosity; σΣ is a turbulent Schmidt number (σΣ = 1); Kt is the turbulent strain
rate; βmDΣΣ is the destruction term which contains the annihilation rate DΣ; αm and
βm are model constants (αm = 2.1, βm = 1). The two last terms on the right-hand side
are, respectively, the proposed closures for the strain 〈aT 〉S Σ and curvature 〈ωkm〉S Σ
terms.

In the following sections, we will model the effect of the wall on each term of (12).

4.2.1. Turbulent diffusion term

Turbulent diffusion accounts for the transport of flame surface by turbulent con-
vection; it is modelled via a turbulent viscosity νt. Despite the fact that theoretical
work (Bray et al. 1981) as well as recent DNS of variable-density flames (Trouvé et
al. 1994; Rutland & Cant 1994) show that counter-gradient diffusion of species and
surface density are found in low-turbulence intensity flames, the gradient diffusion
assumption remains widely used. We will see that it is a good approximation here (as
expected since counter-gradient diffusion mechanisms are driven by density changes).

The usual expression for νt far from the wall is (Launder & Spalding 1972)

ν∞t = cµk
2/ε, (13)

where cµ = 0.09, k is the turbulent kinetic energy, and ε the turbulent dissipation.
Figure 13 shows the exact νt (calculated from the DNS), compared with (13). In

the log region (which stretches up to h/3 in this calculation), expression (13) over-
estimates the turbulent viscosity. It is therefore necessary to correct the expression
for νt in the log zone. We choose to use the Van Driest mixing length (Launder &
Spalding 1972) which gives

ν0
t = c1

µ

(
κy
(

1− e−y
+/A+

))
k1/2, (14)

where c1
µ = 0.50, κ = 0.41, y+ = yuτ/ν and A+ = 26.
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Figure 14. Turbulent diffusion term at four times of flame–wall interaction. (a) , t/tf = 3.6;
, t/tf = 7.3; (b) , t/tf = 10.8; , t/tf = 14.6. Comparison between model and

DNS: , DNS result −(∂/∂y)
(
〈v′〉S Σ

)
; , modelled term (∂/∂y)

(
(νt/σΣ)(∂Σ)/(∂y)

)
.

A proper expression for the turbulent viscosity is therefore νt = min
(
ν∞t , ν

0
t

)
, as

shown in figure 13.
Figure 14 shows the comparison between the modelled diffusion term using this

turbulent viscosity, and the DNS turbulent diffusion term. The modelled term agrees
very well with the DNS results. This expression will be used in the rest of this paper.

4.2.2. Strain term

The strain term (the second term on the right-hand side of (2)) accounts for
straining of flame elements by turbulence. In many recent flamelet models, the strain
term is estimated using the Intermittent Turbulent Net Flame Stretch (ITNFS) model
(Meneveau & Poinsot 1991; Boudier et al. 1992):

Kt =
ε

k
f

(
u′′

s0l
,
L

δ0
l

)
, (15)
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Figure 15. Profiles of strain term. (a) The profiles of the exact strain term 〈aT 〉S computed by
the DNS at ( ), t/tf = 7.3 and ( ), t/tf = 10.8; the profile of the modelled term using
the new model: ( ), αmKt, and the profile using a simpler model often used in CFD codes to
compute CFD codes to compute flame–wall interactions ( ), ε/k. (b) The DNS term 〈aT 〉S Σ
(with a thin line) is compared to the new model αmKtΣ (with a thick line), at different times of the
interaction: , t/tf = 3.6; , t/tf = 7.3; , t/tf = 10.8.

where u′′ = (2k/3)1/2 is the RMS turbulent velocity, L the integral length scale in the
fresh gases, δ0

l is the laminar flame thickness, and f is a function given in the work
of Meneveau & Poinsot (1991).

In the fully turbulent region (y+ > 50) we expect the turbulence to strain the flame
in accord with (15), with L = L0, the integral scale. In the vicinity of the wall, vortices
larger than their distance to the wall are not expected to survive. So the integral scale
in the ITNFS model needs to be corrected. If L is equal to its value in the channel
L0 for y+ > 50, it is expected to be approximately proportional to the wall distance
for y+ < 50, as is the mixing length (Launder & Spalding 1972). A similar idea was
used by Steiner & Boulochos (1995) in their modelling of turbulent flame speed in an
engine. We therefore correct the length scale: L = L0 for y+ > 50, and L = 1

50
y+L0

for y+ < 50. Determination of L0 is difficult in the channel. We do not use the Van
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Figure 16. Profiles of destruction term, comparison of DNS and model. The expression for a model
without quenching is also displayed. (a) t/tf = 7.3, (b) t/tf = 10.8 and (c) t/tf = 14.6, ,

2 〈ωkm〉S Σ measured in DNS; , −βm(ρ0
1Y

0
1 s

0
l QmodelΣ

2)/(ρYF ) model with quenching effects,

, −βm(ρ0
1Y

0
1 s

0
l Σ

2)/(ρYF ) model without quenching effects. Note that in (a), the two model
expressions (with and without quenching effects) merge because there is no quenching at this instant.

Driest mixing length, since it is relative to the direction normal to the wall, while the
most effective vortices are straining the flame in the streamwise direction. We take
(Kim et al. 1987) L0 = 2h.

In figure 15 this expression is tested against DNS results for the strain term in (2)
and also shows good agreement. Figure 15 also shows the error done when ε/k is used
for the strain rate (an approximation used in many flamelet models (Duclos, Veynante
& Poinsot 1993). The peak of the strain term near the wall in figure 15(a) is explained
by Bruneaux et al. 1996 and due to highly strained flame elements approaching the
wall very closely and pushed there by horseshoe vortices. As demonstrated in figure
15(b), these events have a small effect on the source term in the Σ-equation (〈aT 〉S Σ))
and they may be simply omitted in the model at this stage.

4.2.3. Destruction term

As shown in §3.2, the curvature term 〈ωkm〉S Σ in (2) is a destruction term. It
accounts for flame shortening due to flame front interaction. In flamelet models this
term is usually modelled as DΣΣ with a model constant βm. Here, we have to modify
this term to account for the wall. To do this, we perform a new derivation of this
term.
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Figure 17. Correlation between displacement speed, ω, and laminar flame speed, sl , for a laminar
flame–wall interaction. , calculation using the DNS code, with the parameters of table
1; , calculation with a theoretical-numerical approach, β = 4; , calculation with a
theoretical-numerical approach, β = 6; , calculation with a theoretical-numerical approach,

β = 8; , 1−
(
1− sl/s0l

)
/γω,l with γω,l = 0.6.

We start by writing the annihilation rate DΣ as 1/tc, where tc is a characteristic
consumption time. This time may be estimated as the ratio of a mass of fuel mf per
unit volume VT to the volumetric fuel mass consumption rate: tc = mf/(ρ

0
1Y

0
1 〈sl〉S S ),

where S is the flame area in volume VT (S = ΣVT ) and mf = ρYFVT . This leads to
the following expression for the annihilation rate:

DΣ =
ρ0

1Y
0

1 〈sl〉S Σ
ρYF

. (16)

Special care has to be taken close to walls, because the consumption speed 〈sl〉S
decreases rapidly there due to quenching (in classical flamelet models 〈sl〉S = s0l is
used).

We already have derived and validated a model for 〈sl〉S (see (10)) : 〈sl〉S = Qmodels
0
l ,

and therefore a destruction term that accounts for wall effects may be written:

DΣ =
ρ0

1Y
0

1 s
0
l QmodelΣ

ρYF
. (17)

This expression is compared to the exact destruction term in figure 16 at various
times. The modelled expression without the wall correction is also displayed. Before
quenching (t/tf = 7.3 and 10.8) the comparison is good, and it is improved by the
wall correction. Later (t/tf = 14.6), the modelled term over-estimates the destruction
term, but the quenching correction clearly improves the comparison.

4.2.4. Propagation term

Usually, the propagation term is not modelled in flamelet models. The ratio of this
laminar term to the dominant terms is related to the turbulent–laminar flame speed
ratio. Hence, for a highly turbulent freely propagating flame it is neglected. However,
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Figure 18. Profiles of the propagation term at four times of flame–wall interaction. Com-
parison of model and DNS. (a) , t/tf = 3.6; , t/tf = 7.3; (b) ,
t/tf = 10.8; , t/tf = 14.6; , DNS result for −(∂/∂y) 〈ωny〉S Σ; , model

(∂/∂y)
(
s0l
(
1− (1− Qmodel) /γω

)
Σ
)
.

it becomes important near walls as shown above and needs to be modelled in the
flame–wall configuration.

Two effects influence the flame displacement speed. First, flame stretch affects the
flamelet structure (Candel et al. 1990; Cant et al. 1990; Bray 1990). Second, near
walls, quenching of flamelet elements may cause the displacement speed to become
negative, when flamelets retreat from near-wall high-enthalpy-loss regions. At this
point, we neglect stretch effects and retain only the effects of quenching.

For a laminar flame–wall interaction (without stretch effects), the flame displace-
ment speed ω is directly linked to the consumption speed sl (Wichman & Bruneaux
1995). Without quenching, ω = sl = s0l . When flames come closer to the wall, sl
decreases but the displacement speed ω decreases faster. Figure 17 displays ω vs.
sl/s

0
l for four calculations: a laminar interaction in conditions similar to the turbulent

calculation presented here and three calculations using the approach of (Wichman
& Bruneaux 1995), where the reduced activation energy β is varied. It appears
that consumption and displacement speeds during quenching may be related by
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Mean reaction
Evolution equation for Σ

rate Destruction Propagation Turbulent diffusion Strain

Exact ω̇R = 〈ωkm〉S Σ −〈ωny〉S Σ − ∂

∂y
〈v′〉S Σ 〈aT 〉S Σ

expression ρ0
1Y

0
1 〈sl〉S Σ

Initial model ω̇R = −βmDΣΣ
∂

∂y

(
νt

σΣ

∂Σ

∂y

)
αmKtΣ

ρ0
1Y

0
1 s

0
l Σ DΣ =

ρ0
1Y

0
1 s

0
l Σ

ρYF
ν∞t = cµk

2/ε Kt =

ε

k
f

(
u′′

s0l
,
L

δ0
l

)
L = L0

Wall effect Quenching through heat losses Decrease of turbulence scales

Qm = e−γQβLH in the vicinity of the walls

New model ω̇R = DΣ =
∂

∂y
(s0l Σ(1− ν0

t = c1
µk

1/2κy L = y+

50
L0

ρ0
1Y

0
1 s

0
l QmΣ

ρ0
1Y

0
1 s

0
l QmΣ

ρYF
(1− Qm) /γω))

(
1− e−y

+/A+)
if y+ < 50

in log. zone

Table 1. Description of the new model with wall effects.

the following expression:

ω

s0l
' 1−

(
1− sl/s0l

)
/γω,l , (18)

where γω,l = 0.6.

Neglecting the effects of wrinkling on the propagation term and using the model
already derived for the consumption speed, a simple model for the propagation term
is then (

− ∂

∂y
〈ωny〉S Σ

)
model

=
∂

∂y

(
s0l
(
1− (1− Qmodel) /γω

)
Σ
)
, (19)

where γω is a model constant. This model is compared to the DNS database in figure
18 for γω = 0.3. It describes the global propagation of the flame brush towards the
wall and the retreat due to negative values of ω. In order to explain the difference
between γω,l and γω , we calculated γω,l for the laminar calculations in a stagnation
line flow, performed in the work of Bruneaux et al. (1996). We found that γω,l is
reduced down to γω,l ' 0.3 for strain rates equivalent to those found in the turbulent
simulation.

4.3. Budget for the modelled interface surface density equation

Table 1 presents the terms of the present model of the Σ-equation as well as differences
with the classical coherent flame model without the flame–wall interaction submodel.
It is important to note the differences from the FIST model (Poinsot et al. 1993).
The latter is a type of ‘law-of-the-wall’ model in which y+ < 150 is not resolved but
modelled through an ad-hoc relation. Here, our analysis of the terms of the exact
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Figure 19. Profiles of the terms of the modelled flame surface density equation and budget, at

time t/tf = 5.5. (a) , (∂/∂y)
(
(νt/σΣ)/(∂Σ/∂y)

)
; , (∂/∂y)

(
s0l
(
1− (1− Qmodel) /γω

)
Σ
)
;

, αmKtΣ; , −βm(ρ0
1Y

0
1 s

0
l QmodelΣ

2)/(ρYF ); (b) , (∂Σ/∂t); ,

(∂/∂y)
(
(νtσΣ)/(∂Σ∂y)

)
+ (∂/∂y)

(
s0l
(
1− (1− Qmodel) /γω

)
Σ
)

+ αmKtΣ − βm(ρ0
1Y

0
1 s

0
l QmodelΣ

2)/(ρYF ).

equation for the interface surface density allows us to model wall effects on flame
propagation into the near-wall region.

A budget for the wall-corrected modelled Σ-equation is presented for the first
instants of interaction in figures 19, 20. Profiles of the modelled right-hand-side terms
are presented. The second part of those figures compares the transient term ∂Σ/∂t
obtained from the DNS, with the sum of the modelled right-hand-side terms. They
compare quite well for the first instants of interaction (t/tf < 10). It shows that the
model with wall correction is approximately able to account for the change in Σ.
At late interaction times, the comparison is not as good, but remains satisfactory as
shown in the next section.

4.4. Final flamelet model with flame–wall correction terms

In the previous sections, we have derived closures for all terms of the flame surface
density conservation equation. These closures include wall corrections. The final set
of equations is a flamelet model which should be valid both far from and close to the
walls. In this section, we test this model in the configuration used for the DNS and
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Figure 20. As figure 19 but at time t/tf = 9.1.

compare results provided by the model and by the DNS in terms of total reaction
rate, mean fuel mass fraction in the channel, heat flux at the wall and fuel mass
fraction at the wall.

In the case of propagating turbulent flames in a channel flow, flamelet model calcu-
lation reduce to a one-dimensional simulation where variables (the mean temperature
T , the flame surface density Σ and the mean fuel mass fraction YF ) are functions
of the wall distance y and of time t only. Since the flow has constant density and
is not influenced by the flame, no momentum equation is required. A classical eddy
diffusivity is used for turbulent transport and for heat transfer (Kays & Crawford
1993; Launder & Spalding 1972) and the flame surface density closure derived in the
previous sections is used for the mean reaction term:

∂ρcpT

∂t
=

∂

∂y

[(
λ+ ρcp

νt

P rt

)
∂T

∂y

]
+ cp (T2 − T1) ρ

0
1Y

0
1 s

0
l QΣ,

∂ρYF

∂t
=

∂

∂y

[(
ρD + ρ

νt

LePrt

)
∂YF

∂y

]
+ ρ0

1Y
0

1 s
0
l QΣ,

∂Σ

∂t
=

∂

∂y

(
νt

σΣ

∂Σ

∂y

)
+

∂

∂y

(
s0l
(
1− (1− Q) /γω

)
Σ
)

+ αmKtΣ − βmDΣΣ,


(20)
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Figure 21. Results of the one-dimensional model and comparison with DNS. A thin line corre-
spond to DNS results, a thick line corresponds to the one-dimensional model with wall corrections:

, total reaction rate
∫
ΣQdy; , mean wall heat flux | −λ(∂T/∂y)(0, t) |/(ρ0

1s
0
l cp(T2 − T1));

, total mean mass fraction (1/h)
∫
YF (y, t) /Y 0

1 dy; , mean wall mass fraction

YF (0, t) /Y 0
1 .

where Prt is the turbulent prandtl number (Prt = 0.85 (Kays & Crawford 1993);
Le = λ/(ρcpD) = 1 is the Lewis number; Kt and DΣ are the wall-corrected strain and
annihilation factors ((15) and (17)). The turbulent diffusivity νt is calculated from (13)
corrected with (14) in the log zone.

In the absence of walls, Q is equal to unity everywhere and the previous system is
equivalent to the classical CFM (Candel et al. 1990; Duclos et al. 1993) (except for
the propagation term (∂/∂y)

(
s0l Σ
)

which has been added here). In the presence of
walls, the model for Q derived above is used:

Q = e−γQβLH and LH = 1− T − T1

T2 − T1

− YF

Y 0
1

. (21)

This model for Q appears explicitly in (20) but also in the expressions for DΣ and
the mean reaction rate.

Equation 20 is solved using a centred finite-difference scheme and explicit time
integration. The configuration corresponds to a one-dimensional calculation of the
half-channel. The wall is located at y = 0, and the calculation domain extends to the
middle of the channel y = h. One-dimensional meshes of 16, 32 and 64 points have
been tried and the model results proved to be grid insensitive.

Initial conditions raise a specific difficulty because the DNS was initialized with
a laminar flame, a difficult condition for a flamelet model. The T - and YF -profiles
correspond to the initial laminar profiles of the DNS at t/tf = 0, and the Σ-

profile is approximated from the YF -profile through Σ (y, 0) = YF (y, 0)
(
1− YF (y, 0)

)
/∫ h

0
YF
(
1− YF

)
dy.

The system is then free to evolve with the following boundary conditions:
at the wall (y = 0): T (0, t) = T1, ∂YF/∂y (0, t) = 0, Σ (0, t) = 0;
in the middle of the channel: T (h, t) = T2, YF (h, t) = 0, Σ (h, t) = 0.
Results of the model are shown in figure 21 and compared with the DNS results.
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The total reaction rate increases as the flame approaches the wall and is wrinkled
by turbulence. The model compares well with the DNS and predicts acurately the
decrease of mean total mass fraction and mean wall mass fraction of fuel, and the
maximum of mean wall heat flux.

5. Conclusions
During turbulent flame–wall interaction, walls decrease the flame speed through

enthalpy losses and lead to flame quenching but also to modifications of flame
wrinkling. A three-dimensional constant-density simulation database created by direct
numerical simulation (Bruneaux et al. 1996) has been used in this work to study these
phenomena. The influence of the wall on flame propagation was investigated in terms
of wall heat flux, flame speed and flame surface density transport.

A flamelet model able to describe free flame propagation as well as flame-wall
interaction was derived. The starting point of the model is the exact interface density
equation (Trouvé & Poinsot 1994; Candel & Poinsot 1990; Pope 1988). In this
unclosed equation, all terms were measured by averaging the DNS results over 30
realizations and in planes parallel to the channel walls (directions of homogeneity).
First, an exact budget for the flame surface density was closed to check the accuracy
and the self-consistency of the DNS and of the model equation for flame surface
density. Dominant terms were identified: for example, it was shown that during the
interaction, large gradients of Σ near the wall created an inversion of the balance
between the production–destruction terms and the transport terms. Then, each term
was studied and modelled using DNS results. Wall corrections were introduced when
needed.

Two types of tests were performed on the model.
(i) A priori tests: individual terms of the conservation equation for flame surface

density as well as heat transfer terms were compared to DNS. The effects of enthalpy
losses were introduced into a model for the consumption speed and validated against
the DNS database. A closure for the Σ-equation including quenching effects and
scale decrease in the vicinity of the wall was proposed and validated against DNS. It
includes a model for the propagation term that takes into account the flame retreat
from the wall. A budget for this corrected Σ-equation was then presented.

(ii) A posteriori tests, where the final model was used to compute the DNS con-
figuration. Results of the model and DNS were compared in terms of total reaction
rate, mean heat flux to the wall or mean unburnt mass fraction at the wall.

The final model constitutes an extension of existing flamelet models and matches
the present DNS data far from and close to walls. Its validity in flows with higher
Reynolds numbers or with large heat release (situations which are difficult to handle
with DNS at the moment) has to verified in the future by comparing model predictions
and experimental results.
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Trouvé, A., Veynante, D., Bray, K. N. C. & Mantel, T. 1994 The coupling between flame surface
dynamics and species mass conservation in premixed turbulent combustion. Proc. Summer
Program, pp. 95–124. Center for Turbulence Research, Stanford.

Vlachos, D. G. 1995 The interplay of transport, kinetic and thermal interactions in the stability of
premixed hydrogen/air flames near surfaces. Combust. Flame 103, 59–75.

Vlachos, D. G. 1996 Homogeneous-heterogeneous oxidation reactions over platinium and inert
surfaces. Chem. Engng Sci. 51, 2429–2438.

Vosen, S. R., Greif, R. & Westbrook, C. K. 1984 Unsteady heat transfer during laminar flame
quenching. 20th Symp. (Intl) on Combustion, pp. 76–83. The Combustion Institute.

Westbrook, C. K., Adamczyk, A. & Lavoie, G. 1981 A numerical study of laminar flame-wall
quenching. Combust. Flame 40.

Wichman, I. S. & Bruneaux, G. 1995 Head-on quenching of a premixed flame by a cold wall.
Combust. Flame 103, 296–310.

Williams, F. A. 1985 Combustion Theory, pp. 73–76. B. Cummings, Menlo Park, CA.


